JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Novel insights into the mechanism of decreased expression of type X collagen in human mesenchymal stem cells from patients with osteoarthritis cultured on nitrogen-rich plasma polymers: implication of cyclooxygenase-1.

Recent evidence indicates that a major drawback of current cartilage- and intervertebral disc (IVD) tissue engineering is that human mesenchymal stem cells (MSCs) from patients with osteoarthritis rapidly express type X collagen (COL10A1), a marker of late stage chondrocyte hypertrophy associated with endochondral ossification. We recently demonstrated that COL10A1 expression was inhibited in MSCs from patients with osteoarthritis cultured on nitrogen-rich plasma polymerized (PPE:N) coatings. Here, we sought to understand the mechanisms of action of this effect by culturing MSCs on PPE:N surfaces in the presence of different inhibitors of kinases and cyclooxygenases. The effect of PPE:N surfaces on COL10A1 expression was found to be mimicked by the cyclooxygenase inhibitor NPPB, but not by daphnetin (an inhibitor of protein kinases) nor by genistein (an inhibitor of tyrosine kinases). COL10A1 expression was also suppressed by the specific cyclooxygenase-1 (COX-1: SC-560) and 5-lipoxygenase (5-LOX: MK-866) inhibitors, but not by COX-2 (COX-2 inhibitor 2) and 12-LOX (baicalein) inhibitors. Finally, the incubation of MSCs on PPE:N surfaces inhibited the expression of COX-1 while 5-LOX was not expressed in these cells. Taken together, these results indicate that PPE:N surfaces inhibit COL10A1 expression via the suppression of COX-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app