JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proinsulin C-peptide prevents type-1 diabetes-induced decrease of renal Na+-K+-ATPase alpha1-subunit in rats.

AIMS/HYPOTHESIS: C-peptide reduces renal damage in diabetic patients and experimental animal models. In vitro studies suggest that the renal effects of C-peptide may, in part, be explained by stimulation of Na(+)/K(+)-ATPase activity. However, the responses of Na(+)/K(+)-ATPase expression in the kidney of diabetic animals to C-peptide administration remain unclear. The aim of this study was to clarify the responses.

METHODS: Type 1 diabetic rats were produced by injecting streptozotocin (STZ), and some of the rats were treated with either C-peptide or insulin by the aid of an osmotic pump for 1 week. The mRNA expression and immunohistochemical localization of Na(+)/K(+)-ATPase alpha1-, alpha2- and beta3-subunits were investigated in the kidney of these rats.

RESULTS: Na(+)/K(+)-ATPase alpha1-subunit was abundantly expressed in the medullary collecting ducts of control animals, but the expression was markedly decreased in the diabetic state with concomitant decrease in its mRNA expression. Similar decreases were observed in the insulin-treated diabetic rats, whereas in the C-peptide-treated diabetic rats, there was no reduction in the alpha1-expression. The beta3-subunit was expressed in podocytes and parietal cells in the glomeruli, vascular endothelial cells, and cortical collecting ducts, but lesser signals were observed in the proximal and distal tubules. However, the beta3-subunit did not appear to be affected by the diabetic state.

CONCLUSIONS: Diabetes selectively reduced Na(+)/K(+)-ATPase alpha1-subunit expression and abundance. Chronic administration of C-peptide prevented this decrease. This implies a role for C-peptide in the long-term regulation of Na(+)/K(+)-ATPase function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app