Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Soluble epoxide hydrolase deficiency attenuates neointima formation in the femoral cuff model of hyperlipidemic mice.

OBJECTIVE: Epoxyeicosatrienoic acids (EETs) have antiinflammatory effects and are required for normal endothelial function. The soluble epoxide hydrolase (sEH) metabolizes EETs to their less active diols. We hypothesized that knockout and inhibition of sEH prevents neointima formation in hyperlipidemic ApoE(-/-) mice.

METHODS AND RESULTS: Inhibition of sEH by 12-(3-adamantan-1-yl-ureido) dodecanoic acid or knockout of the enzyme significantly increased plasma EET levels. sEH activity was detectable in femoral and carotid arteries. sEH knockout or inhibition resulted in a significant reduction of neointima formation in the femoral artery cuff model but not following carotid artery ligation. Although macrophage infiltration occurred abundantly at the site of cuff placement in both sEH(+/+) and sEH(-/-), the expression of proinflammatory genes was significantly reduced in femoral arteries from sEH(-/-) mice. Moreover, an in vivo 5-bromo-2'-deoxyuridine assay revealed that smooth muscle cell proliferation at the site of cuff placement was attenuated in sEH knockout and sEH inhibitor-treated animals.

CONCLUSION: These observations suggest that inhibition of sEH prevents vascular remodeling in an inflammatory model but not in a blood flow-dependent model of neointima formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app