JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Disruption of SM22 promotes inflammation after artery injury via nuclear factor kappaB activation.

Circulation Research 2010 April 31
RATIONALE: SM22 (or transgelin), an actin-binding protein abundant in vascular smooth muscle cells (VSMCs), is downregulated in atherosclerosis, aneurysm and various cancers. Abolishing SM22 in apolipoprotein E knockout mice accelerates atherogenesis. However, it is unclear whether SM22 disruption independently promotes arterial inflammation.

OBJECTIVE: To investigate whether SM22 disruption directly promotes inflammation on arterial injury and to characterize the underlying mechanisms.

METHODS AND RESULTS: Using carotid denudation as an artery injury model, we showed that Sm22 knockout (Sm22(-/-)) mice developed enhanced inflammatory responses with higher induction of proinflammatory genes, including Vcam1, Icam1, Cx3cl1, Ccl2, and Ptgs2. Higher expression of these genes was confirmed in primary Sm22(-/-) VSMCs and in PAC1 cells after Sm22 knockdown, whereas SM22 recapitulation in primary Sm22(-/-) VSMCs decreased their expression. NFKB2 was prominently activated in both injured carotids of Sm22(-/-) mice and in PAC1 cells after Sm22 knockdown and may mediate upregulation of these proinflammatory genes. As a NF-kappaB activator, reactive oxygen species (ROS) increased in primary Sm22(-/-) VSMCs and in PAC1 cells after Sm22 knockdown. ROS scavengers blocked NF-kappaB activation and induction of proinflammatory genes. Furthermore, Sm22 knockdown increased Sod2 expression and activated p47phox, reflecting contributions of mitochondria and NADPH oxidase to the augmented ROS production; this may result from actin and microtubule cytoskeletal remodeling.

CONCLUSIONS: Our findings show that SM22 downregulation can induce proinflammatory VSMCs through activation of ROS-mediated NF-kappaB pathways. This study provides initial evidence linking VSMC cytoskeleton remodeling with arterial inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app