Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of JAK/STAT signaling pathway prevents high-glucose-induced increase in endothelin-1 synthesis in human endothelial cells.

Emerging evidence demonstrates the involvement of endothelin-1 (ET-1) in the pathophysiology of cardiovascular disorders associated with diabetes mellitus. The molecular mechanisms accountable for the increased production of ET-1 are not completely defined. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is an essential pathogenic mechanism leading to endothelial cell dysfunction. Our aim has been to investigate the role of JAK/STAT in the regulation of ET-1 synthesis in human endothelial cells (EAhy926 cells line). EAhy926 cells were exposed to normal (5 mM) or high (25 mM) glucose concentrations in the presence/absence of various JAK/STAT inhibitors. Using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and gene reporter assay, we found that JAK/STAT inhibitors (STAT1 decoy oligodeoxynucleotides, AG490, S3I201, WP1066) significantly diminished the high-glucose-dependent up-regulation of ET-1 mRNA, peptide synthesis, and promoter activity. In silico analysis of the human ET-1 promoter revealed the presence of typical STAT1-gamma-activated sequence (STAT1-GAS) elements. Transient overexpression of STAT1 indicated an up-regulation of ET-1 promoter activity. Chromatin immunoprecipitation demonstrated the physical interaction of STAT1 proteins with the predicted GAS sites. Regulation of ET-1 synthesis by the JAK/STAT pathway thus represents a novel mechanism by which high glucose induces endothelial cell dysfunction in diabetes. Since the JAK/STAT system is an important regulator of the response of endothelial cells to injury, the modulation of this system and the subsequent decrease in ET-1 level may represent a key pharmacological target in diabetes-associated cardiovascular disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app