Finite element investigation of stentless pericardial aortic valves: relevance of leaflet geometry

Fang Li Xiong, Wolfgang A Goetz, Chuh Khiun Chong, Yeow Leng Chua, Stefan Pfeifer, Erich Wintermantel, Joon Hock Yeo
Annals of Biomedical Engineering 2010, 38 (5): 1908-18
Recent developments in aortic valve replacement include the truly stentless pericardial bioprostheses with single point attached commissures (SPAC) implantation technique. The leaflet geometry available for the SPAC valves can either be a simple tubular or a complex three-dimensional structure molded using specially designed molds. Our main objective was to compare these two leaflet designs, the tubular vs. the molded, by dynamic finite element simulation. Time-varying physiological pressure loadings over a full cardiac cycle were simulated using ABAQUS. Dynamic leaflet behavior, leaflet coaptation parameters, and stress distribution were compared. The maximum effective valve orifice area during systole is 633.5 mm(2) in the molded valve vs. 400.6 mm(2) in the tubular valve, and the leaflet coaptation height during diastole is 4.5 mm in the former, in contrast to 1.6 mm in the latter. Computed compressive stress indicates high magnitudes at the commissures and inter-leaflet margins of the tubular valve, the highest being 3.83 MPa, more than twice greater than 1.80 MPa in the molded valve. The molded leaflet design which resembles the native valve exerts a positive influence on the mechanical performance of the SPAC pericardial valves compared with the simple tubular design. This may suggest enhanced valve efficacy and durability.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"