Add like
Add dislike
Add to saved papers

Mannitol and AMP do not induce bronchoconstriction in eosinophilic bronchitis: further evidence for dissociation between airway inflammation and bronchial hyperresponsiveness.

BACKGROUND AND OBJECTIVE: Eosinophilic bronchitis (EB) shares many pathological features with asthma. However, patients with EB do not develop the characteristic physiological abnormalities of asthma: variable airflow obstruction and bronchial hyperresponsiveness (BHR) to a direct bronchial challenge with methacholine. Indirect bronchial challenges with AMP and mannitol are dependent on the presence of airway inflammation, and positive in 10% of asthmatic subjects who have a negative response to methacholine. We have therefore investigated whether subjects with EB are responsive to indirect airway challenge with AMP and mannitol.

METHODS: Subjects with asthma, EB and healthy controls attended on up to four occasions. After screening, subjects performed bronchial provocation tests to methacholine and then either AMP or mannitol. Each challenge was followed immediately by sputum induction for the measurement of airway inflammation and mast cell-derived histamine.

RESULTS: No subjects with EB responded to either AMP (n = 5) or mannitol (n = 7) while 4/8 and 7/10 subjects with asthma responded to the respective challenges (P = 0.057 for AMP, P = 0.004 for mannitol). There was no difference in induced sputum concentrations of histamine or eosinophil cell counts following methacholine challenge compared with AMP or mannitol.

CONCLUSIONS: The airways of patients with EB are not responsive to either direct or indirect bronchial challenge. This supports the view that it is the presence of functionally abnormal airway smooth muscle that is the key determinant of BHR in asthma, and that while this may be aggravated by the presence of mucosal airway inflammation, it is not caused by it.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app