JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Brain-derived neurotrophic factor inhibits cell cycle reentry but not endoplasmic reticulum stress in cultured neurons following oxidative or excitotoxic stress.

Neurotrophins protect neurons against glutamate and oxidative stress, but the underlying mechanism remains unclear. We investigated the neuroprotective role of the neurotrophin brain-derived neurotrophic factor (BDNF) in neuronal cultures subjected to NMDA or H(2)O(2) toxicity and analyzed the molecular mechanisms involved, particularly those related to regulation of cell cycle or endoplasmic reticulum (ER) stress. Preincubation with BDNF of cortical neuron cultures prevented NMDA- or H(2)O(2)-induced neuronal death as well as MAPK-ERK1/2 activation. Inhibition of phosphatidylinositol 3-kinase (PI3-K) abolished the protective effect of BDNF. NMDA and H(2)O(2) induced activation of cell cycle reentry regulators such as retinoblastoma (Rb) protein and E2F1 transcription factor. However, BDNF abolished the activation of both factors. NMDA-induced expression of chaperone encoding gene BIP was slightly inhibited by BDNF, but it did not affect expression of ER stress protein CHOP. Our results suggest that BDNF neuroprotection may be mediated through inhibition of Ras-MAPK pathway and cell cycle reentry during oxidative or excitotoxic stress responses. However, BDNF did not modify expression of ER stress signal induced by NMDA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app