JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

gorgon, a novel missense mutation in the SHOOT MERISTEMLESS gene, impairs shoot meristem homeostasis in Arabidopsis.

The shoot meristem is a group of self-perpetuating cells that ultimately gives rise to the aerial parts of plants. The Arabidopsis thaliana SHOOT MERISTEMLESS (STM) gene, which encodes a knotted1-like homeobox transcription factor, is required for shoot meristem formation and maintenance, and loss-of-function mutations in the gene result in complete loss or premature termination of the shoot meristem. Here, we report a novel missense allele of STM, gorgon (gor), which displays striking differences in shoot meristem defects compared with known stm alleles. The gor phenotype results from substitution of the highly conserved arginine at position 53 of the homeodomain, which is important for DNA binding in other homeodomain proteins. In gor, the shoot meristem enlarges continuously during post-embryonic development and the floral meristems frequently develop additional whorls. These phenotypes, together with enlarged expression domains of meristem markers, indicate that the mutation affects shoot meristem activity in the opposite direction to other loss-of-function alleles. However, detailed genetic analyses and overexpression studies indicate that gor represents a novel type of hypomorphic alleles rather than the hypermorph that is suggested by the phenotype. Consistently, the gor allele strictly requires the functional PENNYWISE (PNY) gene, which encodes a known binding partner of the STM protein, to maintain shoot meristem activity, whereas the wild-type allele efficiently maintains the meristem even in the absence of PNY. Our results suggest a critical role for Arg53 of the homeodomain in STM function and that the gor mutation at this residue impairs shoot meristem homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app