JOURNAL ARTICLE

EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling

Hsiu-Chung Ou, Tuzz-Ying Song, Yueh-Chiao Yeh, Chih-Yang Huang, Shun-Fa Yang, Tsan-Hung Chiu, Kun-Ling Tsai, Kai-Ling Chen, Yun-Jhen Wu, Chiou-Sheng Tsai, Li-Yun Chang, Wei-Wen Kuo, Shin-Da Lee
Journal of Applied Physiology 2010, 108 (6): 1745-56
20203069
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), originally identified as the major receptor for oxidized low-density lipoprotein (oxLDL) in endothelial cells, plays a major role in the pathology of vascular diseases. Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. In the present study, we hypothesized that the most abundant polyphenolic compound in tea, epigallocatechin-3-gallate (EGCG), can downregulate parameters of endothelial dysfunction by modulating LOX-1-regulated cell signaling. In cultured human umbilical vein endothelial cells (HUVECs), exposure to oxLDL (130 microg/ml), which led to an increase in LOX-1 expression at the RNA and protein levels, was abrogated by addition of EGCG or DPI, a well-known inhibitor of flavoproteins, suggesting the involvement of NADPH oxidase. Furthermore, oxLDL rapidly activated the membrane translocation of Rac-1 and p47phox and the subsequent induction of ROS generation, which was suppressed markedly by pretreatment with EGCG or anti-LOX-1 monoclonal antibody. OxLDL also increased p38 MAPK phosphorylation and decreased phosphorylation of the amino-terminal region of Akt, with maximal induction at about 30 min, and NF-kappaB phosphorylation within 1 h, resulting in redox-sensitive signaling. In addition, oxLDL diminished the expression of endothelial nitric oxide synthase (eNOS), enhanced the expression of endothelin-1 and adhesion molecules (ICAM, E-selectin, and monocyte chemoattractant protein-1), and increased the adherence of monocytic THP-1 cells to HUVECs. Pretreatment with EGCG, however, exerted significant cytoprotective effects in all events. These data suggest that EGCG inhibits the oxLDL-induced LOX-1-mediated signaling pathway, at least in part, by inhibiting NADPH oxidase and consequent ROS-enhanced LOX-1 expression, which contributes to further ROS generation and the subsequent activation of NF-kappaB via the p38 MAPK pathway. Results from this study may provide insight into a possible molecular mechanism by which EGCG suppresses oxLDL-mediated vascular endothelial dysfunction.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20203069
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"