Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effects of N-acetyl cysteine on the MG132 proteasome inhibitor-treated lung cancer cells in relation to cell growth, reactive oxygen species and glutathione.

MG132 as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). Here, we investigated the effects of N-acetyl cysteine (NAC; a well-known antioxidant), L-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) or diethyldithiocarbamate (DDC; an inhibitor of Cu/Zn-SOD) on MG132-treated Calu-6 or A549 lung cancer cells in relation to cell growth, ROS and GSH levels. MG132 inhibited the growth of Calu-6 and A549 cells at 24 h. MG132 induced apoptosis in both cell lines, which was accompanied by the loss of mitochondrial membrane potential (MMP; DeltaPsim). ROS levels including O(2)(.-) were increased in both MG132-treated lung cells. MG132 also induced GSH depletion in both lung cell types. Treatment with 10 microM BSO or 1 microM DDC affected ROS and GSH levels in MG132-treated Calu-6 cells. However, these changes did not influence cell growth and death in the cells. NAC prevented cell growth inhibition and death in MG132-treated lung cells, which was accompanied by decreased ROS, but not by decreased GSH depletion. In conclusion, the changes of ROS and GSH by MG132, NAC, BSO or DDC were partially related to cell growth and death in the lung cancer cell lines Calu-6 and A549.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app