JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1.

Blood 2010 April 23
ABT-737 is a small-molecule antagonist of BCL-2 currently under evaluation in clinical trials in the oral form of ABT-263. We anticipate that acquired resistance to this promising drug will inevitably arise. To study potential mechanisms of resistance to ABT-737, we derived resistant lines from initially sensitive OCI-Ly1 and SU-DHL-4 lymphoma cell lines via long-term exposure. Resistance was based in the mitochondria and not due to an inability of the drug to bind BCL-2. Resistant cells had increased levels of BFL-1 and/or MCL-1 proteins, which are not targeted by ABT-737. Proapoptotic BIM was displaced from BCL-2 by ABT-737 in both parental and resistant cells, but in resistant cells, BIM was sequestered by the additional BFL-1 and/or MCL-1. Decreasing MCL-1 levels with flavopiridol, PHA 767491, or shRNA restored sensitivity to ABT-737 resistant cells. MCL-1 was up-regulated not by protein stabilization but rather by increased transcript levels. Surprisingly, in addition to stable increases in MCL-1 transcript and protein in resistant cells, there was a dynamic increase within hours after ABT-737 treatment. BFL-1 protein and transcript levels in resistant cells were similarly dynamically up-regulated. This dynamic increase suggests a novel mechanism whereby modulation of antiapoptotic protein function communicates with nuclear transcriptional machinery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app