Add like
Add dislike
Add to saved papers

The proteasome inhibitor bortezomib inhibits FGF-2-induced reduction of TAZ levels in osteoblast-like cells.

OBJECTIVES: Bortezomib (PS-341; Velcade), a proteasome inhibitor, is used as a therapeutic agent for multiple myeloma. Bortezomib has been shown to strongly induce osteoblast differentiation and elevate the levels of osteoblast-related differentiation markers in the serum of patients with myeloma. Bortezomib also reportedly increases the activity of the transcription factor, Runx2. However, the mechanism of action by which bortezomib-elevated Runx2 activity mediates osteoblast differentiation remains unclear. On the other hand, fibroblast growth factor 2 (FGF-2) is found at high levels in patients with multiple myeloma. We previously reported that FGF-2 reduces the levels of the transcriptional coactivator with PDZ-binding motif (TAZ). We therefore investigated the effects of bortezomib on TAZ protein levels in the presence of FGF-2.

METHODS: Osteoblastic MC3T3-E1 cells were treated with different concentrations of bortezomib in the presence or absence of FGF-2 and various biologic responses were investigated by immunoblotting, RT-PCR, quantitative PCR, and alizarin red staining.

RESULTS: We found that bortezomib inhibited FGF-2-induced reduction of TAZ levels through a pathway other than that used for proteasome inhibition, while maintaining TAZ function, which in turn, enhanced the expression of Runx2-transcribed osteogenic differentiation markers. Bortezomib also suppressed the antimineralization effect of FGF-2.

CONCLUSIONS: These findings suggest that bortezomib inhibited FGF-2-induced reduction of TAZ and consequently stimulated osteogenic differentiation independently of proteasome inhibition. These findings may contribute to elucidate the osteolytic mechanism in multiple myeloma, and to the development of new drugs for multiple myeloma and other osteolytic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app