JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metformin's effect on exercise and postexercise substrate oxidation.

Exercise and metformin may prevent or delay Type 2 diabetes by, in part, raising the capacity for fat oxidation. Whether the addition of metformin has additive effects on fat oxidation during and after exercise is unknown. Therefore, the purpose of this study was to evaluate the effect of metformin on substrate oxidation during and after exercise. Using a double-blind, counter-balanced crossover design, substrate oxidation was assessed by indirect calorimetry in 15 individuals taking metformin (2,000 mg/d) and placebo for 8-10 d. Measurements were made during cycle exercise at 5 submaximal cycle workloads, starting at 30% peak work (W(peak)) and increasing by 10% every 8 min to 70% W(peak). Substrate oxidation was also measured for 50 min postexercise. Differences between conditions were assessed using analysis of variance with repeated measures, and values are reported as M + or - SE. During exercise, fat oxidation (0.19 + or - 0.03 vs. 0.15 + or - 0.01 g/min, p < .01) and percentage of energy from fat (32% + or - 3% vs. 28% + or - 3%, p < .01) were higher with metformin than with placebo. Postexercise, metformin slightly lowered fat oxidation (0.12 + or - 0.02 to 0.10 + or - 0.02 g/min, p < .01) compared with placebo. There was an inverse relationship between postexercise fat oxidation and the rate of fat oxidation during exercise (r = -.68, p < .05). In healthy individuals, metformin has opposing actions on fat oxidation during and after exercise. Whether the same effects are evident in insulin-resistant individuals remains to be determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app