JOURNAL ARTICLE

The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells

Ying Liu, Falk Harnisch, Katja Fricke, Uwe Schröder, Victor Climent, Juan Miguel Feliu
Biosensors & Bioelectronics 2010 May 15, 25 (9): 2167-71
20189793
In this communication we show that the achievable maximum current density for mature wastewater-based microbial biofilms is strongly dependent on the electrode material and the operation temperature. On graphite and polycrystalline carbon rods, the catalytic current of about 500 microA cm(-2) (projected surface area) at 30 degrees C was achieved. Carbon fiber veil or carbon-paper based materials, having a large microbially-accessible surface gave a projected current density approximately 40% higher than on graphite rod. In contrast, the biofilm cannot form well on graphite foil. Elevating the temperature from 30 to 40 degrees C increased current density by 80% on graphite rod anodes. Interestingly, the formal potential of the active site (-0.12 V (vs. standard hydrogen electrode (SHE))) is similar to all electrocatalytically active microbial biofilms and to that found for Geobacter sulfurreducens in previous studies. In addition, the real surface area values measured by BET surface area technique cannot provide a reasonable explanation for suitability of an electrode material for the formation of electrochemically active biofilm.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20189793
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"