Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Walking speed estimation using a shank-mounted inertial measurement unit.

We studied the feasibility of estimating walking speed using a shank-mounted inertial measurement unit. Our approach took advantage of the inverted pendulum-like behavior of the stance leg during walking to identify a new method for dividing up walking into individual stride cycles and estimating the initial conditions for the direct integration of the accelerometer and gyroscope signals. To test its accuracy, we compared speed estimates to known values during walking overground and on a treadmill. The speed estimation method worked well across treadmill speeds and slopes yielding a root mean square speed estimation error of only 7%. It also worked well during overground walking with a 4% error in the estimated travel distance. This accuracy is comparable to that achieved from foot-mounted sensors, providing an alternative in sensor positioning for walking speed estimation. Shank mounted sensors may be of great benefit for estimating speed in walking with abnormal foot motion and for the embedded control of knee-mounted devices such as prostheses and energy harvesters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app