Add like
Add dislike
Add to saved papers

A machine learning approach to k-step look-ahead prediction of gait variables from acceleration data.

This paper investigates the use of machine learning to predict a sensitive gait parameter based on acceleration information from previous gait cycles. We investigate a k-step look-ahead prediction which attempts to predict gait variable values based on acceleration information in the current gait cycle. The variable is the minimum toe clearance which has been demonstrated to be a sensitive falls risk predictor. Toe clearance data was collected under normal walking conditions and 9 features consisting of peak acceleration and their normalized occurrences times were extracted. A standard least squares estimator, a generalized regression neural network (GRNN) and a support vector regressor (SVR) were trained using 60% of the data to estimate the minimum toe clearance and the remaining 40% was used to validate the model. It was found that when the training data contained data from all subjects (inter-subject) the best GRNN model provided a root mean square error (RMSE) of 2.8 mm, the best SVR had RMSE of 2.7 mm while the standard least squares linear regression method obtained 3.3 mm. When the training and test data consisted of different subject examples (inter-subject) data, the linear SVR demonstrated superior generalization capability (RMSE=3.3 mm) compared to other competing models. Validation accuracies up to 5-step look-ahead predictions revealed robust performances for both GRNN and SVR models with no clear degradation in prediction accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app