Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations

Wu Liu, James A Zagzebski
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2010, 57 (2): 340-52
By analyzing backscattered echo signal power spectra and thereby obtaining backscatter coefficient vs. frequency data, the size of subresolution scatterers contributing to echo signals can be estimated. Here we investigate trade-offs in data acquisition and processing parameters for reference phantom-based backscatter and scatterer size estimations. RF echo data from a tissue-mimicking test phantom were acquired using a clinical scanner equipped with linear array transducers. One array has a nominal frequency bandwidth of 5 to 13 MHz and the other 4 to 9 MHz. Comparison of spectral estimation methods showed that the Welch method provided spectra yielding more accurate and precise backscatter coefficient and scatterer size estimations than spectra computed by applying rectangular, Hanning, or Hamming windows and much reduced computational load than if using the multitaper method. For small echo signal data block sizes, moderate improvements in scatterer size estimations were obtained using a multitaper method, but this significantly increases the computational burden. It is critical to average power spectra from lateral A-lines for the improvement of scatterer size estimation. Averaging approximately 10 independent A-lines laterally with an axial window length 10 times the center frequency wavelength optimized trade-offs between spatial resolution and the variance of scatterer size estimates. Applying the concept of a time-bandwidth product, this suggests using analysis blocks that contain at least 30 independent samples of the echo signal. The estimation accuracy and precision depend on the ka range where k is the wave number and a is the effective scatterer size. This introduces a region-of-interest depth dependency to the accuracy and precision because of preferential attenuation of higher frequency sound waves in tissuelike media. With the 5 to 13 MHz, transducer ka ranged from 0.5 to 1.6 for scatterers in the test phantom, which is a favorable range, and the accuracy and precision of scatterer size estimations were both within approximately 5% using optimal analysis block dimensions. When the 4- to 9-MHz transducer was used, the ka value ranged from 0.3 to 0.8 to 1.1 for the experimental conditions, and the accuracy and precision were found to be approximately 10% and 10% to 25%, respectively. Although the experiments were done with 2 specific models of transducers on the test phantom, the results can be generalized to similar clinical arrays available from a variety of manufacturers and/or for different size of scatterers with similar ka range.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"