Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells.

Life Sciences 2010 April 25
AIMS: In this study, we evaluated whether catechins could inhibit the expression of pro-inflammatory mediators induced by dental caries-related bacteria, Streptococci, or pathogen-associated molecular patterns (PAMPs) stimulation in human dental pulp fibroblasts (HDPF). We further determined the mechanisms of the anti-inflammatory activity of catechins.

MAIN METHODS: Streptococci or PAMP-stimulated HDPF were treated with catechin, and then the expression and production of pro-inflammatory mediators were determined by RT-PCR and ELISA. Furthermore, the signal transduction pathways activated with toll-like receptor (TLR)2 ligand were assessed by Immunoblot and ELISA using blocking assay with specific inhibitors.

KEY FINDINGS: Increased expressions of pro-inflammatory mediators are found in inflamed dental pulp, especially in HDPF. We recently reported that dental pulpal innate immune responses may mainly result from the predominantly-expressed TLR2 signaling. Catechins, polyphenolic compounds in green tea, exert protective and healing effects through multiple mechanisms, including antioxidative and anti-inflammatory effects. However, there are no reports concerning the effects of catechins on dental pulp. In this study, we demonstrated that the up-regulated expressions of IL-8 or PGE(2) in Streptococci or PAMP-stimulated HDPF were inhibited by catechins, (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG). In TLR2 ligand-stimulated HDPF, specific inhibitors of extracellular signal regulated kinase (ERK)1/2, p38, c-jun NH(2)-terminal kinase (SAP/JNK), NF-kappaB or catechins markedly reduced the level of pro-inflammatory mediators and the phosphorylation of these signal transduction molecules was suppressed by catechins.

SIGNIFICANCE: These findings suggest that catechins might be useful therapeutically as an anti-inflammatory modulator of dental pulpal inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app