JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Prostaglandin E(2), collagenase, and cell death responses depend on cyclical load magnitude in an explant model of tendinopathy.

Tendinopathy is a significant clinical problem that can result from repetitive activity. While the precise etiology of this condition remains unclear, the cellular response to cyclical loading is believed to have a contributory role to the pathology of tendinopathy. This study examined the short-term biochemical response of avian flexor digitorum profundus tendon to repetitive cyclic loadings of varying magnitude. An in vitro tendon explant model was utilized to apply four levels of haversine tensile stress (peak stress of 0, 3, 12, and 18 MPa) at 1.0 Hz, 8 hr/day for 3 days. The 12 and 18 MPa levels were known to cause significant mechanical damage based on previous work. Tissue media was recovered and analyzed for prostaglandin E(2) (PGE(2)), lactate dehydrogenase (LDH, measure of cell death), and collagenase levels. Tissue samples were recovered and analyzed for cell viability, total collagen, and sulfated glycosaminoglycan content. Collagenase, LDH, and PGE(2) levels were found to be influenced by loading magnitude (p < 0.05) with higher levels being present at higher load magnitudes. Varying cyclical load magnitude caused minimal compositional changes as collagen content and glycosaminoglycan did not change. These results indicate that elevated cyclical mechanical loading of tendon quickly results in altered biochemical tissue responses indicative of tissue injury. More sustained cyclical loading over time may be required for these initial responses to induce more dramatic tissue changes as observed in clinical tendinopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app