EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Optimization of collimator trajectory in volumetric modulated arc therapy: development and evaluation for paraspinal SBRT.

PURPOSE: To develop a collimator trajectory optimization paradigm for volumetric modulated arc therapy (VMAT) and evaluate this technique in paraspinal stereotactic body radiation therapy (SBRT).

METHOD AND MATERIALS: We propose a novel VMAT paradigm, Coll-VMAT, which integrates collimator rotation with synchronized gantry rotation, multileaf collimator (MLC) motion, and dose-rate modulation. At each gantry angle a principal component analysis (PCA) is applied to calculate the primary cord orientation. The collimator angle is then aligned so that MLC travel is parallel to the PCA-derived direction. An in-house VMAT optimization follows the geometry-based collimator trajectory optimization to obtain the optimal MLC position and monitor units (MU) at each gantry angle. A treatment planning study of five paraspinal SBRT patients compared Coll-VMAT to standard VMAT (fixed collimator angle) and static field IMRT plans. Plan evaluation statistics included planning target volume (PTV) V95%, PTV-D95%, cord-D05%, and total beam-on time.

RESULTS: Variation of collimator angle in Coll-VMAT plans ranges from 26 degrees to 54 degrees , with a median of 40 degrees . Patient-averaged PTV V95% (94.6% Coll-VMAT vs. 92.1% VMAT and 93.3% IMRT) and D95% (22.5 Gy vs. 21.4 Gy and 22.0 Gy, respectively) are highest with Coll-VMAT, and cord D05% (9.8 Gy vs. 10.0 Gy and 11.7 Gy) is lowest. Total beam-on time with Coll-VMAT (5,164 MU) is comparable to standard VMAT (4,868 MU) and substantially lower than IMRT (13,283 MU).

CONCLUSION: Collimator trajectory optimization-based VMAT provides an additional degree of freedom that can improve target coverage and cord sparing of paraspinal SBRT plans compared with standard VMAT and IMRT approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app