Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Electronic structure of a paramagnetic {MNO}6 complex: MnNO 5,5-tropocoronand.

Inorganic Chemistry 2010 March 16
Using density functional theory (OLYP/STO-TZP) calculations, we have investigated the electronic structure of [Mn(5,5-tropocoronand)(NO)], a rare paramagnetic {MNO}(6) complex. Experimental methods, including magnetic susceptibility measurements and high-field electron paramagnetic resonance spectroscopy, have not provided an unambiguous spin state assignment for this complex. In other respects, however, the compound was fully characterized, including by means of single-crystal X-ray structure determination. The optimized S = 1 OLYP geometry reproduced all key aspects of the trigonal-bipyramidal molecular structure, including a short Mn-N(O) distance (approximately 1.7 A) and an essentially linear MnNO angle. In contrast, the S = 0 and S = 2 optimized structures disagreed with the crystal structure in critical respects. Moreover, three different exchange-correlation functionals (OLYP, B3LYP, and B3LYP*) indicated an S = 1 ground state by a clear margin of energy. An examination of the Kohn-Sham MOs of this state indicated a primarily d(xz)(2)d(yz)(2)d(xy)(1)d(x(2)-z(2))(1) electronic configuration, where the z axis is identified with the nearly linear MnNO axis. The d(y(2)) orbital is formally unoccupied in this state, interacting, as it does, head-on with two tropocoronand nitrogens lying along the y axis, the pseudo-3-fold axis of the trigonal bipyramid. The doubly occupied d(xz) and d(yz) orbitals are in actuality d(pi)(Fe)-pi*(NO)-based pi-bonding molecular orbitals, the alpha and beta "components" of which are significantly offset spatially. This offset results in excess minority spin density on the NO unit. Thus, the OLYP/TZP atomic spin populations are Mn, 2.85; N(O), -0.52; and O, -0.35.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app