JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment.

Alzheimer's disease (AD) is a neurodegenerative pathology in which amyloid-beta (Abeta) peptide accumulates in different brain areas leading to deposition of plaques and a progressive decline of cognitive functions. After a decade in which a number of transgenic (Tg) mouse models mimicking AD-like amyloid-deposition pathology have been successfully generated, few rat models have been reported that develop intracellular and extracellular Abeta accumulation, together with impairment of cognition. The generation of a Tg rat reproducing the full AD-like amyloid pathology has been elusive. Here we describe the generation and characterization of a new transgenic rat line, coded McGill-R-Thy1-APP, developed to express the human amyloid-beta precursor protein (AbetaPP) carrying both the Swedish and Indiana mutations under the control of the murine Thy1.2 promoter. The selected mono-transgenic line displays an extended phase of intraneuronal Abeta accumulation, already apparent at 1 week after birth, which is widespread throughout different cortical areas and the hippocampus (CA1, CA2, CA3, and dentate gyrus). Homozygous Tg animals eventually produce extracellular Abeta deposits and, by 6 months of age, dense, thioflavine S-positive, amyloid plaques are detected, associated with glial activation and surrounding dystrophic neurites. The cognitive functions in transgenic McGill-R-Thy1-APP rats, as assessed using the Morris water maze task, were found already altered as early as at 3 months of age, when no CNS plaques are yet present. The spatial cognitive impairment becomes more prominent in older animals (13 months), where the behavioral performance of Tg rats positively correlates with the levels of soluble Abeta (trimers) measured in the cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app