JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Parallel microfluidic surface plasmon resonance imaging arrays.

Lab on a Chip 2010 March 8
Surface plasmon resonance imaging (SPRi) is a label-free technique used for the quantitation of binding affinities and concentrations for a wide variety of target molecules. Although SPRi is capable of determining binding constants for multiple ligands in parallel, current commercial instruments are limited to a single analyte stream on multiple ligand spots. Measurement of binding kinetics requires the serial introduction of different analyte concentrations; such repeated experiments are conducted manually and are therefore time-intensive. To address these challenges, we have developed an integrated microfluidic array using soft lithography techniques for high-throughput SPRi-based detection and determination of binding affinities of antibodies against protein targets. The device consists of 264 element-addressable chambers isolated by microvalves. The resulting 700 pL chamber volumes, combined with a serial dilution network for simultaneous interrogation of up to six different analyte concentrations, allow for further speeding detection times. To test for device performance, human alpha-thrombin was immobilized on the sensor surface and anti-human alpha-thrombin IgG was injected across the surface at different concentrations. The equilibrium dissociation constant was determined to be 5.0 +/- 1.9 nM, which agrees well with values reported in the literature. The interrogation of multiple ligands to multiple analytes in a single device was also investigated and samples were recovered with no cross-contamination. Since each chamber can be addressed independently, this array is capable of interrogating binding events from up to 264 different immobilized ligands against multiple analytes in a single experiment. The development of high-throughput protein analytic measurements is a critical technology for systems approaches to biology and medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app