JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ferromagnetic coupling and magnetic anisotropy in oxalato-bridged trinuclear chromium(III)-cobalt(II) complexes with aromatic diimine ligands.

Two novel heterotrinuclear chromium(III)-cobalt(II) complexes of formula {[Cr(III)(bpy)(ox)(2)](2)Co(II)(Me(2)bpy)}.2H(2)O (1) and {[Cr(III)(phen)(ox)(2)](2)Co(II)(Me(2)bpy)}.1.5H(2)O (2) [ox = oxalato, bpy = 2,2'-bipyridine, Me(2)bpy = 6,6'-dimethyl-2,2'-bipyridine, and phen = 1,10-phenanthroline] have been synthesized using the "complex-as-ligand/complex-as-metal" strategy. The X-ray crystal structure of 2 consists of neutral oxalato-bridged Cr(III)(2)Co(II) bent entities formed by the coordination of two anionic [Cr(III)(phen)(ox)(2)](-) complexes through one of their oxalato groups toward a cationic cis-[Co(II)(Me(2)bpy)](2+) complex. The three tris(chelated), six-coordinated metal atoms possess alternating propeller chiralities leading thus to a racemic mixture of heterochiral (Lambda,Delta,Lambda)- and (Delta,Lambda,Delta)-Cr(III)Co(II)Cr(III) triads, whereby the two peripheral chromium(III) ions adopt a trigonal distorted trapezoidal bipyramidal geometry and the central high-spin cobalt(II) ion exhibits a compressed rectangular bipyramidal one. The intermolecular pi-pi stacking interactions between the enantiomeric pairs of heterochiral Cr(III)(2)Co(II) entities through the aromatic diimine terminal ligands lead to a unique two-dimensional supramolecular network. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak but non-negligible intermolecular antiferromagnetic interactions [zj = -0.012 (2a) and -0.08 cm(-1) (2b)] between the Cr(III)(2)Co(II) molecules possessing a moderately anisotropic S = 9/2 ground state. This results from the moderately weak intramolecular ferromagnetic coupling [J = +2.43 (1) and +2.34 cm(-1) (2)] between the two peripheral Cr(III) (S(Cr) = 3/2) and the central high-spin Co(II) (S(Co) = 3/2) ions across the oxalato bridge as well as the appreciable single-ion axial magnetic anisotropy of the central high-spin Co(II) (S(Co) = 3/2) ion [D(Co) = -2.29 (1) and -2.15 cm(-1) (2)]. A simple molecular orbital analysis of the exchange interaction in 1 and 2 identifies the sigma- and pi-type pathways involving the d(x(2)-y(2))(Cr)/d(xy)(Co) and d(xz)(Cr)/d(yz)(Co) pairs of orthogonal magnetic orbitals, respectively, as the two main individual contributions responsible for the overall ferromagnetic coupling observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app