IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus.

Brain Research 2010 April 15
Fast glutamatergic and GABAergic transmission in the central nucleus of the inferior colliculus (ICC), a major auditory midbrain structure, is mediated respectively by alpha-amino-3-hydroxy-5-methylisoxazole-4 propionic acid (AMPA) and gamma-aminobutyric acid (GABA)(A) receptors. In this study, we used whole-cell patch clamp recordings in brain slices to investigate the effects of activation of metabotropic glutamate receptors (mGluRs) on synaptic responses mediated by AMPA and GABA(A) receptors in ICC neurons of young rats. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) mediated respectively by AMPA and GABA(A) receptors were elicited by stimulation of the lateral lemniscus, the major afferent pathway to the ICC. The agonists for groups I and II mGluRs, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), and for group III mGluRs, L-2-amino-3-hydroxypropanoic acid 3-phosphate (L-SOP), did not affect intrinsic membrane properties of the ICC neurons. The agonist for group II mGluRs, (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0] hexane-4,6-dicarboxylic acid (LY379268), significantly reduced the AMPA receptor-mediated EPSCs and GABA(A) receptor-mediated IPSCs. The effects were reversed by the group II mGluR antagonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495). The agonists for groups I and III, (RS)-3,5-dihydroxyphenylglycine (DHPG) and L-SOP, respectively, did not affect AMPA or GABA(A) receptor-mediated responses. The reduction of the synaptic responses by LY379268 was accompanied by a substantial increase in a ratio of the second to the first AMPA receptor-mediated EPSCs and GABA(A) receptor-mediated IPSCs to paired-pulse stimulation. The results suggest that group II mGluRs regulate both fast glutamatergic and GABAergic synaptic transmission in the ICC, probably through a presynaptic mechanism due to reduction of transmitter release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app