JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs and NF-kappaB/AP-1-dependent mechanisms.

Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has recently been shown to possess antitumor activity in various cancer cells. However, the effects of DHA in preventing the invasion of cancer cells have not been studied. In the present study, we investigated the inhibitory effects of DHA on tumor invasion and migration and the possible mechanisms involved using human fibrosarcoma HT-1080 cells. DHA reduced PMA-induced activation of MMP-9 and MMP-2 and further inhibited cell invasion and migration. DHA suppressed PMA-enhanced expression of MMP-9 protein, mRNA, and transcriptional activity through suppressing NF-kappaB and AP-1 activation without changing the level of tissue inhibitor of metalloproteinase (TIMP)-1. DHA also reduced PMA-enhanced MMP-2 expression by suppressing membrane-type 1 MMP (MT1-MMP), but did not alter TIMP-2 levels. DHA-inhibited PMA-induced NF-kappaB and c-Jun nuclear translocation, which are upstream of PMA-induced MMP-9 expression and invasion. Furthermore, DHA strongly repressed the PMA-induced phosphorylation of Raf/ERK and JNK, which are dependent on the PKCalpha pathway. In conclusion, we demonstrated that the anti-invasive effects of DHA may occur through inhibition of PKCalpha/Raf/ERK and JNK phosphorylation and reduction of NF-kappaB and AP-1 activation, leading to down-regulation of MMP-9 expression. The data presented show that DHA is an effective anti-metastatic agent that functions by down-regulating MMP-9 gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app