Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway.

Neuroscience 2010 May 6
Cerebral hypoxia is one of the main causes of cerebral injury. This study was conducted to investigate the potential protective effect of H(2)S in in vitro hypoxic models by subjecting SH-SY5Y cells to either oxygen-glucose deprivation or Na(2)S(2)O(4) (an oxygen scavenger) treatment. We found that treatment with NaHS (an H(2)S donor, 10-100 microM) 15 min prior to hypoxia increased cell viability in a concentration-dependent manner. Time-course study showed that NaHS was able to exert its protective effect even when added 8 h before or less than 4 h after hypoxia induction. Interestingly, endogenous H(2)S level was markedly reduced by hypoxia induction. Over-expression of cystathionine-beta-synthase prevented hypoxia induced cell apoptosis. Blockade of ATP-sensitive K(+) (K(ATP)) channels with glibenclamide and HMR-1098, protein kinase C (PKC) with its three specific inhibitors (chelerythrine, bisindolylmaleide I and calphostin C), extracellular signal-regulated kinase 1/2 (ERK1/2) with PD98059 and heat shock protein 90 (Hsp90) with geldanamycin and radicicol significantly attenuated the protective effects of NaHS. Western blots showed that NaHS significantly stimulated ERK1/2 activation and Hsp90 expression. In conclusion, H(2)S exerts a protective effect against cerebral hypoxia induced neuronal cell death via K(ATP)/PKC/ERK1/2/Hsp90 pathway. Our findings emphasize the important neuroprotective role of H(2)S in the brain during cerebral hypoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app