JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation.

Nano Letters 2010 March 11
We report the design and characterization of a novel double-sided CdS and CdSe quantum dot cosensitized ZnO nanowire arrayed photoanode for photoelectrochemical (PEC) hydrogen generation. The double-sided design represents a simple analogue of tandem cell structure, in which the dense ZnO nanowire arrays were grown on an indium-tin oxide substrate followed by respective sensitization of CdS and CdSe quantum dots on each side. As-fabricated photoanode exhibited strong absorption in nearly the entire visible spectrum up to 650 nm, with a high incident-photon-to-current-conversion efficiency (IPCE) of approximately 45% at 0 V vs Ag/AgCl. On the basis on a single white light illumination of 100 mW/cm(2), the photoanode yielded a significant photocurrent density of approximately 12 mA/cm(2) at 0.4 V vs Ag/AgCl. The photocurrent and IPCE were enhanced compared to single quantum dot sensitized structures as a result of the band alignment of CdS and CdSe in electrolyte. Moreover, in comparison to single-sided cosensitized layered structures, this double-sided architecture that enables direct interaction between quantum dot and nanowire showed improved charge collection efficiency. Our result represents the first double-sided nanowire photoanode that integrates uniquely two semiconductor quantum dots of distinct band gaps for PEC hydrogen generation and can be possibly applied to other applications such as nanostructured tandem photovoltaic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app