JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst.

Development 2010 March
Primitive endoderm (PE) and epiblast (EPI) are two lineages derived from the inner cell mass (ICM) of the E3.5 blastocyst. Recent studies showed that EPI and PE progenitors expressing the lineage-specific transcriptional factors Nanog and Gata6, respectively, arise progressively as the ICM develops. Subsequent sorting of the two progenitors during blastocyst maturation results in the ormation of morphologically distinct EPI and PE layers at E4.5. It is, however, unknown how the initial differences between the two populations become established in the E3.5 blastocyst. Because the ICM cells are derived from two distinct rounds of polarized cell divisions during cleavage, a possible role for cell lineage history in promoting EPI versus PE fate has been proposed. We followed cell lineage from the eight-cell stage by live cell tracing and could find no clear linkage between developmental history of individual ICM cells and later cell fate. However, modulating FGF signaling levels by inhibition of the receptor/MAP kinase pathway or by addition of exogenous FGF shifted the fate of ICM cells to become either EPI or PE, respectively. Nanog- or Gata6-expressing progenitors could still be shifted towards the alternative fate by modulating FGF signaling during blastocyst maturation, suggesting that the ICM progenitors are not fully committed to their final fate at the time that initial segregation of gene expression occurs. In conclusion, we propose a model in which stochastic and progressive specification of EPI and PE lineages occurs during maturation of the blastocyst in an FGF/MAP kinase signal-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app