Add like
Add dislike
Add to saved papers

Pt-encapsulated Pd-Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells.

Pt-encapsulated Pd(x)Co(100-x) nanoalloy electrocatalysts supported on carbon have been synthesized by a rapid microwave-assisted solvothermal (MW-ST) method within 15 min at as low as 300 degrees C. Subsequently, the samples have been heat treated at 900 degrees C in a reducing gas atmosphere to obtain Pt-Pd-Co nanoalloys. X-ray diffraction (XRD) analysis of the as-synthesized and 900 degrees C heat-treated samples reveals interesting changes in phase compositions and degree of alloying with Co and Pt contents and heat treatment. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) data of the as-synthesized samples confirm Pt enrichment on the surface of the Pd-Co nanoparticles. Rotating disk electrode (RDE) and single cell proton exchange membrane fuel cell measurements reveal that the as-synthesized Pt-encapsulated Pd(80)Co(20) (i.e., 75 wt % Pd(80)Co(20) + 25 wt % Pt) with 20 wt % total metal loading on carbon or 5 wt % Pt exhibit higher catalytic activity for the oxygen reduction reaction (ORR) compared to Pt with 20 wt % Pt loading on carbon. Significant changes in the catalytic activity for ORR occur on heat treatment at 900 degrees C as a result of changes in the phase composition and increase in particle size. This study demonstrates that the encapsulation of Pd-Co alloys with Pt offers a significant enhancement in activity for ORR per unit mass of Pt, offering a significant cost savings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app