Add like
Add dislike
Add to saved papers

Isolated hip and ankle fatigue are unlikely risk factors for anterior cruciate ligament injury.

Lower extremity neuromuscular fatigue purportedly increases anterior cruciate ligament (ACL) injury risk through promotion of extreme landing mechanics. However, the impact of fatigue on muscle groups critical to the landing strategy remains unclear. This study examined the effects of isolated hip rotator and triceps surae fatigue on lower extremity landing biomechanics. Sixteen healthy females (18-22 years) reported for testing on two occasions, with one muscle group fatigued per session. Subjects performed three single-leg landings onto a force platform pre- and post-fatigue, defined as an 80% decrease in peak torque in the targeted muscle group. Hip rotator fatigue was induced via alternating concentric contractions and triceps surae fatigue through concentric plantar flexion contractions on an isokinetic dynamometer. Initial contact (IC) kinematics and peak stance (PS) kinetics and kinematics were analyzed pre- and post-fatigue. Hip rotator fatigue increased IC (P=0.05) and PS (P=0.04) hip internal rotation angles. Triceps surae fatigue decreased IC knee flexion (P=0.01) angle. Isolated hip rotator and triceps surae fatigue each produced modifications in lower limb kinematic parameters viewed as risk factors for ACL injury. These modifications, however, do not appear of sufficient magnitude to compromise ligament integrity, suggesting injury via an integrative lower extremity fatigue mechanism is more likely.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app