Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Over-expression of osa-MIR396c decreases salt and alkali stress tolerance.

Planta 2010 April
Salt and alkali stress are two of the main environmental factors limiting rice production. Thus, understanding the mechanisms of salinity and alkali stress tolerance is necessary to modify rice to increase its resistance to salinity and alkaline stress. MicroRNAs (miRNAs) are approximately 21-nucleotide RNAs that are ubiquitous regulators of gene expression in eukaryotic organisms. In plants, miRNAs constitute one of five classes of small RNAs that function primarily as negative regulators for gene expression at the posttranscriptional level. Several plant miRNAs, such as miR396, play vital roles in plant growth, development and resistance to stresses. In this study, we identified osa-MIR396c, which shows dramatic transcript change under salt and alkali stress conditions in Oryza sativa. We designed an experiment to detect miRNA-target interaction and demonstrated that several transcription factors related to growth, development, and stress tolerance are targeted by osa-MIR396c. Transgenic rice and Arabidopsis thaliana plants constitutively over-expressing osa-MIR396c showed reduced salt and alkali stress tolerance compared to that of wild-type plants. Overall, this study further established a link between salt and alkali stress and osa-MIR396c in rice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app