COMPARATIVE STUDY
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Effects of oxygen breathing on inspiratory muscle fatigue during resistive load in cycling men.

The aim of the present study was to determine the development of the inspiratory muscle fatigue in healthy human during incremental cycling to exhaustion under mild and heavy resistive loaded breathing in air and oxygen. Minute ventilation, tidal volume, respiratory rate, inspiratory mouth pressure, and parasternal EMG activities were recorded during an incremental cycling test under mild (12 cmH(2)O x l(-1) x s(-1)) and heavy (40 cmH(2)O x l(-1) x s(-1)) resistive loading in air and oxygen in 8 men. The degree of inspiratory muscle fatigue was evaluated by analysis of the dynamics of inspiratory mouth pressure, 'tension-time' index, and the fall of the high-to-low (H/L) ratio of the parasternal EMG. It was found that oxygen breathing slowed the development of inspiratory muscles fatigue evoked by incremental cycling only during mild resistive loading, whereas hyperoxia had not influence on inspiratory muscle endurance during heavy resistive loading.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app