Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B.

BACKGROUND & AIMS: T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been shown to influence autoimmune diseases; however, its function in viral infection has not been well-defined. We therefore investigated the expression and regulatory function of Tim-3 in natural killer (NK) cells in chronic Hepatitis B (CHB) infection.

METHODS: Seventy-six CHB patients, 38 healthy controls, and 18 patients with fatty liver disease (FLD) were tested for Tim-3 expression on peripheral blood mononuclear cells (PBMCs) and in the liver tissue by flow cytometry and immunohistochemical stainning. The effects of HBV infection on Tim-3 expression in NK cells and the roles of Tim-3 in regulation of NK-cell function were also studied.

RESULTS: There was a significant increase of Tim-3 expression in PBMCs, circulating NK cells and liver infiltrating lymphocytes (LILs) from CHB patients compared to that of healthy controls and FLD patients. Increased Tim-3 expression was also detected in NK92 cells that had been transfected with a HBV expression vector and NK cells isolated from the liver of HBV transgenic mice. Importantly, blockage of Tim-3 signaling with anti-Tim-3 antibodies or Tim-3-Fc fusion proteins resulted in an increased cytotoxicity for NK92 cells compared to HepG2 and HepG2.2.15 cells, as well as an elevated interferon-gamma (IFN-gamma) production. Similarly, enhanced cytotoxicity was also observed in PBMCs or NK cells from CHB patients treated with the Tim-3 blockade ex vivo.

CONCLUSION: HBV infection can up-regulate Tim-3 expression in NK cells, which may in turn suppress NK-cell functions in CHB patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app