JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Excited states of fluorescent proteins, mKO and DsRed: chromophore-protein electrostatic interaction behind the color variations.

The emitting states of green fluorescent protein (GFP), monomeric Kusabira orange (mKO), and Discosoma red (DsRed) were studied using QM/MM and SAC-CI methods. By comparing the electronic structures among the green-, orange-, and red-emitting states as well as their electrostatic and quantum mechanical interactions within the protein cavity, the basic mechanisms for determining emission colors have been clarified. We found that the orange and red emissions of mKO and DsRed, respectively, result from cancellation between two effects, the pi skeleton extension (red shift) and protein electrostatic potential (blue shift). The extension of the pi skeleton enhances the intramolecular charge-transfer character of the transition, which makes the fluorescence energy more sensitive to the protein's electrostatic potential. On the basis of this mechanism, we predicted amino acid mutations that could red shift the emission energy of DsRed. A novel single amino acid mutation, which was examined computationally, reduced the DsRed emission energy from 2.14 (579 nm) to 1.95 eV (636 nm), which is approaching near-infrared fluorescence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app