JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection.

We investigated antinociceptive activity of botulinum toxin type A (BTX-A) in a model of diabetic neuropathic pain in rats. Male Wistar rats were made diabetic by a single intraperitoneal injection of streptozotocin (80mg/kg). Sensitivity to mechanical and thermal stimuli was measured with the paw-pressure and hot-plate test, respectively. The formalin test was used to measure sensitivity to chemical stimuli. Diabetic animals with pain thresholds lower for at least 25% compared to the non-diabetic group were considered neuropathic and were injected with BTX-A either subcutaneously (3, 5 and 7U/kg) or intrathecally (1U/kg). Mechanical and thermal sensitivity was measured at several time-points. After peripheral application, BTX-A (5 and 7U/kg) reduced mechanical and thermal hypersensitivity not only on ipsilateral, but on contralateral side, too. The antinociceptive effect started 5days following BTX-A injection and lasted at least 15days. Formalin-induced hypersensitivity in diabetic animals was abolished as well. When applied intrathecally, BTX-A (1U/kg) reduced diabetic hyperalgesia within 24h supporting the assumption of retrograde axonal transport of BTX-A from the peripheral site of injection to central nervous system. The results presented here demonstrate the long-lasting pain reduction after single BTX-A injection in the animals with diabetic neuropathy. The bilateral pain reduction after unilateral toxin application and the effectiveness of lower dose with the faster onset after the intrathecal injection suggest the involvement of the central nervous system in the antinociceptive action of BTX-A in painful diabetic neuropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app