Add like
Add dislike
Add to saved papers

Muscle bioenergetic impairment in hyperthyroid man: a study by 31P NMR spectroscopy.

Phosphorus nuclear magnetic resonance spectroscopy was used to investigate muscle bioenergetics in 9 hyperthyroid patients who were compared with 9 normal subjects. Using the thenar muscle group as reference, the inorganic phosphate, phosphocreatine and intracellular pH were calculated at rest, during aerobic exercise (0.13 w) and post-exercise recovery. No difference was found at rest. After 5 min of exercise, the hyperthyroid patients exhibited a more important phosphocreatine depletion (41.2 +/- 8.2 vs 31.1% +/- 6.5, p less than 0.02) and a larger pH fall (6.65 +/- 0.04 vs 7.01 +/- 0.10, p less than 0.001) than the control subjects. The phosphocreatine recovery rate was not significantly different in hyperthyroid patients and control subjects. These results suggest that exercise requires more ATP in hyperthyroid patients than in normal subjects and that there is excessive dependence on glycolytic metabolism for ATP synthesis in hyperthyroidism. Phosphocreatine resynthesis, reflecting the oxidative metabolism, is not increased. These metabolic disturbances could also supply a partial explanation to the frequent exercise intolerance in hyperthyroid patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app