Add like
Add dislike
Add to saved papers

High-throughput droplet PCR.

The polymerase chain reaction has facilitated the ready analysis of nucleic acids. A next challenge requires the development of means to unravel the complexity of heterogeneous tissues. This has presented the task of producing massively parallelized quantitative nucleic acid data from the cellular constituents of tissues. The production of aqueous droplets in a two phase flow is shown to be readily and routinely facilitated by miniaturized fluidic devices. Droplets serve as ideal means to package a future generation of PCR, offering an enhanced handling potential by virtue of reactant containment, to concurrently eliminate both contamination and sample loss. This containment also enables the measurement of nucleic acids from populations of cells, or molecules by means of high throughput, single cell analysis. Details are provided for the production of a prototype micro-fluidic device which shows the production and stable flow of droplets which we suggest will be suitable for droplet-based continuous flow micro-fluidic PCR. Suggestions are also made as to the optimal fabrication techniques and the importance of device calibration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app