Add like
Add dislike
Add to saved papers

De novo selection of high-affinity antibodies from synthetic fab libraries displayed on phage as pIX fusion proteins.

Filamentous phage was the first display platform employed to isolate antibodies in vitro and is still the most broadly used. The success of phage display is due to its robustness, ease of use, and comprehensive technology development, as well as a broad range of selection methods developed during the last two decades. We report here the first combinatorial synthetic Fab libraries displayed on pIX, a fusion partner different from the widely used pIII. The libraries were constructed on four V(L) and three V(H) domains encoded by IGV and IGJ germ-line genes frequently used in human antibodies, which were diversified to mirror the variability observed in the germ-line genes and antibodies isolated from natural sources. Two sets of libraries were built, one with diversity focused on V(H) by keeping V(L) in the germ-line gene configuration and the other with diversity in both V domains. After selection on a diverse panel of proteins, numerous specific Fabs with affinities ranging from 0.2 nM to 20 nM were isolated. V(H) diversity was sufficient for isolating Fabs to most antigens, whereas variability in V(L) was required for isolation of antibodies to some targets. After the application of an integrated maturation process consisting of reshuffling V(L) diversity, the affinity of selected antibodies was improved up to 100-fold to the low picomolar range, suitable for in vivo studies. The results demonstrate the feasibility of displaying complex Fab libraries as pIX fusion proteins for antibody discovery and optimization and lay the foundation for studies on the structure-function relationships of antibodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app