CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Heterozygous mutation within a kinase-conserved motif of the insulin-like growth factor I receptor causes intrauterine and postnatal growth retardation.

BACKGROUND: IGF-I receptor (IGF1R) plays an essential role in human intrauterine and postnatal development. Few heterozygous mutations in IGF1R leading to IGF-I resistance and intrauterine and postnatal growth retardation have been described to date.

OBJECTIVE: The clinical and functional relevance of a novel heterozygous IGF1R mutation identified in a girl with short stature and six relatives was evaluated.

PATIENTS: Affected individuals showed birth lengths between -1.40 and -1.82 sd score (SDS) and birth weights between -1.84 and -2.19 SDS. Postnatal growth retardation ranged between -1.51 and -3.93 height SDS. Additional phenotypic findings were variable including microcephaly, clinodactyly, delayed menarche, and diabetes mellitus type 2. Genetic analyses were initiated due to elevated IGF-I levels of the girl.

RESULTS: Denaturing HPLC screening and direct DNA sequencing revealed a heterozygous G3464C IGF1R mutation in exon 19 located within a phylogenetically conserved motif of the kinase domain. The resultant mutation of glycine 1125 to alanine (G1125A) did not affect IGF1R protein expression in transiently transfected COS-7 cells and Igf1R deficient mouse fibroblasts but abrogated IGF-I-induced receptor autophosphorylation and phosphorylation of downstream kinases protein kinase B/Akt and MAPK/Erk (mouse proteins are reported). Cotransfection of wild-type and mutant IGF1R resulted in reduced autophosphorylation of 36 +/- 10% of wild-type levels, suggesting a partial dominant-negative effect.

CONCLUSION: The identified G1125A mutation results in a kinase-deficient IGF1R, which is likely to cause the phenotype of intrauterine and postnatal growth retardation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app