Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Alopecia in IL-10-deficient mouse pups is c-kit-dependent and can be triggered by iron deficiency.

Hair loss (alopecia) can result from a variety of metabolic, endocrine, immunologic, and environmental causes. This investigation was undertaken to determine the mechanisms underlying the sporadic development of alopecia in litters from C57BL/6 interleukin-10-deficient (Il10(-/-)) mice. All pups in affected litters demonstrated alopecia by postnatal days 17-19, with hair loss from their trunks but not from their head, base of tail, or feet. Histopathology revealed distorted hair follicles containing broken hair shafts and prominent dermal infiltrates containing increased numbers of activated mast cells. Hair re-growth began soon after weaning, suggesting that the alopecia was triggered by factors transmitted during lactation. Milk from Il10(-/-) dams induced macrophage secretion of pro-inflammatory cytokines in vitro regardless of whether or not their pups developed alopecia. Feeding dams a diet containing 3-6 ppm iron increased the percentage of litters with alopecia to 100% for pups with mast cells, with 0% alopecia in mast cell-deficient pups. When dams were fed a diet containing 131 ppm iron, significantly lower haemoglobin and hematocrit values were observed in pups from litters with alopecia (71%; 5 of 7 litters) compared to litters without alopecia. Genetic or pharmacologic inhibition of c-kit that resulted in depletion of mast cells in pups prevented hair loss in at-risk litters. These studies demonstrate that maternal iron-restricted diets enhance the incidence of alopecia in IL-10-deficient mouse pups and suggest mast cells as potential effector cells. Further studies are indicated to further explore the mechanisms involved and to determine how mast cells may contribute to alopecia in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app