JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Diminished diet-induced hyperglycemia and dyslipidemia and enhanced expression of PPARalpha and FGF21 in mice with hepatic ablation of brain-derived neurotropic factor.

Brain-derived neurotropic factor (BDNF) mediates many aspects of neuronal function, and plays a chief role in the central regulation of energy balance. In the periphery, it is expressed in organs involved in energy, lipid, and glucose homeostasis, including the liver, but its role there remains unclear. Here, we describe studies examining the effect of selectively depleting hepatic BDNF. Liver-specific mutant mice exhibited normal food intake and body weights when fed standard chow or high-fat diets (HFDs). However, whereas HFD intake induced mild hyperglycemia and hyperinsulinemia in wild-types (WTs), liver-specific BDNF mutants were protected from these effects. Serum levels of cholesterol and triglycerides were also elevated in HFD-fed WTs, but they were normal or slightly increased in BDNF mutants. Furthermore, whereas WTs fed HFD exhibited elevated levels of circulating alanine aminotransferase and aspartate aminotransferase, BDNF mutant males fed a similar diet had a normal content of both enzymes. Molecular analysis indicated that the livers of BDNF mutants fed HFD contained elevated levels of peroxisome proliferator-activated receptor alpha (Pparalpha or Ppara as listed in the MGI Database) and fibroblast growth factor 21 (Fgf21) transcripts compared with WTs. This is a notable finding as this pathway has anti-diabetic and lipid clearance effects. Accordingly, genes involved in lipid and glucose handling and targets of PPARalpha and FGF21 were upregulated in the BDNF mutant livers. The collective data indicate that hepatic BDNF might facilitate the emergence of insulin resistance, dyslipidemia, and liver disease following HFD challenge by suppressing PPARalpha and FGF21.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app