Add like
Add dislike
Add to saved papers

Vibron phonon in a lattice of H-bonded peptide units: A criterion to discriminate between the weak and the strong coupling limit.

Based on dynamical considerations, a simple and intuitive criterion is established to measure the strength of the vibron-phonon coupling in a lattice of H-bonded peptide units. The main idea is to compare separately the influence of both the vibron-phonon coupling and the dipole-dipole interaction on a specific element of the vibron reduced density matrix. This element, which refers to the coherence between the ground state and a local excited amide-I mode, generalizes the concept of survival amplitude at finite temperature. On the one hand, when the dipole-dipole interaction is neglected, it is shown that dephasing-limited coherent dynamics is induced by the vibron-phonon coupling. On the other hand, when the vibron-phonon coupling is disregarded, decoherence occurs due to dipole-dipole interactions since the local excited state couples with neighboring local excited states. Therefore, our criterion simply states that the strongest interaction is responsible for the fastest decoherence. It yields a critical coupling chi( *) approximately 25 pN at biological temperature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app