Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Expanded scope of synthetic bacteriochlorins via improved acid catalysis conditions and diverse dihydrodipyrrin-acetals.

Bacteriochlorins are attractive candidates for a wide variety of photochemical studies owing to their strong absorption in the near-infrared spectral region. The prior acid-catalysis conditions [BF(3) x O(Et)(2) in CH(3)CN at room temperature] for self-condensation of a dihydrodipyrrin-acetal (bearing a geminal dimethyl group in the pyrroline ring) typically afforded a mixture of three macrocycles: the expected 5-methoxybacteriochlorin (MeOBC-type), a 5-unsubstituted bacteriochlorin (HBC-type), and a free base B,D-tetradehydrocorrin (TDC-type). Here, a broad survey of >20 acids identified four promising acid catalysis conditions of which TMSOTf/2,6-di-tert-butylpyridine in CH(2)Cl(2) at room temperature was most attractive owing to formation of the 5-methoxybacteriochlorin as the sole macrocycle regardless of the pyrrolic substituents in the dihydrodipyrrin-acetal (electron-withdrawing, electron-donating, or no substituent). Eleven new dihydrodipyrrin-acetals were prepared following standard routes. Application of the new acid catalysis conditions has afforded diverse bacteriochlorins (e.g., bearing alkyl/ester, aryl/ester, diester, and no substituents) in a few days from commercially available starting materials. Consideration of the synthetic steps and yields for formation of the dihydrodipyrrin-acetal and bacteriochlorin underpins evaluation of synthetic plans for early installation of bacteriochlorin substituents via the dihydrodipyrrin-acetal versus late installation via derivatization of beta-bromobacteriochlorins. Treatment of the 5-methoxybacteriochlorins with NBS gave regioselective 15-bromination when no pyrrolic substituents were present or when each pyrrole contained two substituents; on the other hand, the presence of a beta-ethoxycarbonyl group caused loss of regioselectivity. The 15 new bacteriochlorins prepared herein exhibit a long-wavelength absorption band in the range 707-759 nm, providing tunable access to the near-infrared region. Taken together, this study expands the scope of available bacteriochlorins for fundamental studies and diverse applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app