Add like
Add dislike
Add to saved papers

No acetyl group deficit is evident at the onset of exercise at 90% of maximal oxygen uptake in humans.

The existence of an acetyl group deficit at or above 90% of maximal oxygen uptake (VO(2max)) has proved controversial, with contradictory results likely relating to limitations in previous research. The purpose of the present study was to determine whether the "acetyl group deficit" occurs at the start of exercise at 90%VO(2max) in a well-controlled study. Eight male participants (age: 33.6 +/- 2.0 years; VO(2max): 3.60 +/- 0.21 litres . min(-1)) completed two exercise bouts at 90%VO(2max) for 3 min following either 30 min of saline (control) or dichloroacetate (50 mg . kg(-1) body mass) infusion, ending 15 min before exercise. Muscle biopsies were obtained immediately before and after exercise while continuous non-invasive measures of pulmonary oxygen uptake and muscle deoxygenation were made. Muscle pyruvate dehydrogenase activity was significantly higher before exercise following dichloroacetate infusion (control: 2.67 +/- 0.98 vs. dichloroacetate: 17.9 +/- 1.1 mmol acetyl-CoA . min(-1) . mg(-1) protein, P = 0.01) and resulted in higher pre- and post-exercise muscle acetylcarnitine (pre-exercise control: 3.3 +/- 0.95 vs. pre-exercise dichloroacetate: 8.0 +/- 0.88 vs. post-exercise control: 11.9 +/- 1.1 vs. post-exercise dichloroacetate: 17.2 +/- 1.1 mmol . kg(-1) dry muscle, P < 0.05). However, substrate-level phosphorylation (control: 125 +/- 20 vs. dichloroacetate: 113 +/- 13 mmol adenosine triphosphate . kg(-1) dry muscle) and VO(2) kinetics (control: 19.2 +/- 2.2 vs. dichloroacetate: 22.8 +/- 2.5 s), were unaltered. Furthermore, dichloroacetate infusion blunted the slow component of VO(2) and muscle deoxygenation and slowed muscle deoxygenation kinetics, possibly by enhancing oxygen delivery during exercise. These data support the hypothesis that the "acetyl group deficit" does not occur at or above 90%VO(2max).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app