COMPARATIVE STUDY
JOURNAL ARTICLE
REVIEW

Comparing milled fiber, Quebec ore, and textile factory dust: has another piece of the asbestos puzzle fallen into place?

D Wayne Berman
Critical Reviews in Toxicology 2010, 40 (2): 151-88
20085481
Results of a meta-analysis indicate that the variation in potency factors observed across published epidemiology studies can be substantially reconciled (especially for mesothelioma) by considering the effects of fiber size and mineral type, but that better characterization of historical exposures is needed before improved exposure metrics potentially capable of fully reconciling the disparate potency factors can be evaluated. Therefore, an approach for better characterizing historical exposures, the Modified Elutriator Method (MEM), was evaluated to determine the degree that dusts elutriated using this method adequately mimic dusts generated by processing in a factory. To evaluate this approach, elutriated dusts from Grade 3 milled fiber (the predominant feedstock used at a South Carolina [SC] textile factory) were compared to factory dust collected at the same facility. Elutriated dusts from chrysotile ore were also compared to dusts collected in Quebec mines and mills. Results indicate that despite the substantial variation within each sample set, elutriated dusts from Grade 3 fiber compare favorably to textile dusts and elutriated ore dusts compare to dusts from mines and mills. Given this performance, the MEM was also applied to address the disparity in lung cancer mortality per unit of exposure observed, respectively, among chrysotile miners/millers in Quebec and SC textile workers. Thus, dusts generated by elutriation of stockpiled chrysotile ore (representing mine exposures) and Grade 3 milled fiber (representing textile exposures) were compared. Results indicate that dusts from each sample differ from one another. Despite such variation, however, the dusts are distinct and fibers in Grade 3 dusts are significantly longer than fibers in ore dusts. Moreover, phase-contrast microscopy (PCM) structures in Grade 3 dusts are 100% asbestos and counts of PCM-sized structures are identical, whether viewed by PCM or transmission electron microscope (TEM). In contrast, a third of PCM structures in ore dusts are not asbestos and only a third that are counted by PCM are also counted by TEM. These distinctions also mirror the characteristics of the bulk materials themselves. Perhaps most important, when the differences in size distributions and PCM/TEM distinctions in these dusts are combined, the combined difference is sufficient to completely explain the difference in exposure/response observed between the textile worker and miner/miller cohorts. Importantly, however, evidence that such an explanation is valid can only be derived from a meta-analysis (risk assessment) covering a diverse range of epidemiology study environments, which is beyond the scope of the current study. The above findings suggest that elutriator-generated dusts mimic factory dusts with sufficient reliability to support comparisons between historical exposures experienced by the various cohorts studied by epidemiologists. A simulation was also conducted to evaluate the relative degree that the characteristics of dust are driven by the properties of the bulk material processed versus the nature of the mechanical forces applied. That results indicate it is the properties of bulk materials reinforces the theoretical basis justifying use of the elutriator to reconstruct historical exposures. Thus, the elutriator may be a valuable tool for reconstructing historical exposures suitable for supporting continued refinements of the risk models being developed to predict asbestos-related cancer risk.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
20085481
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"