Add like
Add dislike
Add to saved papers

Pacific decadal oscillation hindcasts relevant to near-term climate prediction.

Decadal-scale climate variations over the Pacific Ocean and its surroundings are strongly related to the so-called Pacific decadal oscillation (PDO) which is coherent with wintertime climate over North America and Asian monsoon, and have important impacts on marine ecosystems and fisheries. In a near-term climate prediction covering the period up to 2030, we require knowledge of the future state of internal variations in the climate system such as the PDO as well as the global warming signal. We perform sets of ensemble hindcast and forecast experiments using a coupled atmosphere-ocean climate model to examine the predictability of internal variations on decadal timescales, in addition to the response to external forcing due to changes in concentrations of greenhouse gases and aerosols, volcanic activity, and solar cycle variations. Our results highlight that an initialization of the upper-ocean state using historical observations is effective for successful hindcasts of the PDO and has a great impact on future predictions. Ensemble hindcasts for the 20th century demonstrate a predictive skill in the upper-ocean temperature over almost a decade, particularly around the Kuroshio-Oyashio extension (KOE) and subtropical oceanic frontal regions where the PDO signals are observed strongest. A negative tendency of the predicted PDO phase in the coming decade will enhance the rising trend in surface air-temperature (SAT) over east Asia and over the KOE region, and suppress it along the west coasts of North and South America and over the equatorial Pacific. This suppression will contribute to a slowing down of the global-mean SAT rise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app