Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Contribution of the central dopaminergic system in the anti-hypertensive effect of kinin B1 receptor antagonists in two rat models of hypertension.

Neuropeptides 2010 April
Kinins are neuroactive peptides that could play a role in central autonomic control of blood pressure. Whereas kinin B1R binding sites were increased in specific brain areas of spontaneously hypertensive rats (SHR) and Angiotensin II (AngII)-hypertensive rats, the contribution of kinin B1R in hypertension remains controversial. The aims of the study were to determine: (a) the effects on mean arterial blood pressure (MAP) of centrally and peripherally administered B1R antagonists in SHR (16weeks) and AngII-hypertensive rats (200ng/kg/minx2weeks, s.c.); (b) the contribution of central dopamine in the effects of SSR240612. The rationale is based on the overactivity of the dopaminergic system in hypertension. In both models, SSR240612 (1, 5 and 10mg/kg, gavage) reduced dose-dependently MAP (-75mm Hg at least up to 6-8h) and this therapeutic effect was resolved after 24h. At the dose of 5mg/kg, SSR240612-induced anti-hypertension was prevented by two dopamine receptor blockers, namely raclopride (0.16mg/kg, i.v.) and haloperidol (10mg/kg, s.c.). I.c.v. SSR240612 (1mug) decreased rapidly MAP in both models (1-6h) via a raclopride sensitive mechanism. In comparison, peripherally acting B1R antagonists (R-715 and R-954, 2mg/kg, s.c.) caused shorter and very modest decreases of MAP (from -20 to -30mm Hg). Centrally or peripherally administered B1R antagonists had no effect on MAP in control Wistar-Kyoto rats. Data provide the first pharmacological evidence that the up-regulated brain kinin B1R contributes through a central dopaminergic mechanism (DA-D2R) to the maintenance of arterial hypertension in genetic and experimental animal models of hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app