JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SIP1 mediates cell-fate decisions between neuroectoderm and mesendoderm in human pluripotent stem cells.

Cell Stem Cell 2010 January 9
Human embryonic stem cells (hESCs) rely on fibroblast growth factor and Activin-Nodal signaling to maintain their pluripotency. However, Activin-Nodal signaling is also known to induce mesendoderm differentiation. The mechanisms by which Activin-Nodal signaling can achieve these contradictory functions remain unknown. Here, we demonstrate that Smad-interacting protein 1 (SIP1) limits the mesendoderm-inducing effects of Activin-Nodal signaling without inhibiting the pluripotency-maintaining effects exerted by SMAD2/3. In turn, Activin-Nodal signaling cooperates with NANOG, OCT4, and SOX2 to control the expression of SIP1 in hESCs, thereby limiting the neuroectoderm-promoting effects of SIP1. Similar results were obtained with mouse epiblast stem cells, implying that these mechanisms are evolutionarily conserved and may operate in vivo during mammalian development. Overall, our results reveal the mechanisms by which Activin-Nodal signaling acts through SIP1 to regulate the cell-fate decision between neuroectoderm and mesendoderm in the progression from pluripotency to primary germ layer differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app